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Validating density-functional theory simulations at high energy-density conditions with liquid
krypton shock experiments to 850 GPa on Sandia’s Z machine
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We use Sandia’s Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to
850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05
functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude
that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high
energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering
properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures
above 10 eV (110 kK). Finally, we present comparisons of our data from the Z experiments and DFT calculations
to current equation of state models of krypton to determine the best model for high energy-density applications.
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I. INTRODUCTION

Density-functional theory (DFT) [1] has emerged as the
method of choice for first-principles simulations of material’s
properties under high energy-density conditions, for example,
the extreme pressures and temperatures reached under shock
compression. There are now many examples of accurate DFT
simulations compared to high-precision experimental data,
primarily from first- and second-row elements and compounds
such as hydrogen [2], carbon [3], quartz [4], water [5], and
carbon dioxide [6]. Part of the reason that DFT has been
so successful in this role is its ability to account for the
effects of high temperatures and pressures due to the use
of the Mermin formulation [7]. The inability of classical
potentials to accurately reproduce very wide range Hugoniots
can be directly attributable to this inability to explicitly model
the changing degrees of freedom that different temperatures
imply [8].

Although DFT is a formally exact reformulation of the
quantum mechanical many-body problem, providing a path
to observables via density functionals, different types of ap-
proximations enter during the course of performing large-scale
quantum molecular dynamics (QMD) simulations. Consider-
able interest exists in validating calculations for elements with
higher atomic number in regimes of high density, temperature,
and pressure. The properties of krypton make it ideal to
study these effects on heavier elements; the initial state of
cryogenically cooled liquid krypton is well known. Extensive
literature on static compression of krypton at low temperatures
that provides a valuable reference on how pressure affects
the solid phase and its melting behavior [9–13]. Upon shock
compression, krypton turns metallic, resulting in a reflective
shock front, allowing for very high-precision measurements of
the shock velocity. Few experimental data on krypton at high
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pressures exist, with prior Hugoniot data limited to just below
100 GPa. Obtaining data in the range of several hundreds of
GPa would provide knowledge of the behavior of krypton at
a significantly increased range in density, temperature, and
pressure.

In addition to the broad experimental motivation for this
work, our initial DFT krypton Hugoniot calculations indicated
that the standard projector augmented wave (PAW) potential
distributed with VASP was inadequate at the high pressures
and temperatures occurring under strong shock compression,
raising important questions about verification of PAW poten-
tials and validation of QMD as a method in general at very
high temperatures. In this paper, we describe an approach to
evaluating and constructing PAW potentials with high fidelity
for application to high pressure, density, and temperature. We
furthermore examine the liquid krypton Hugoniot to pressures
of 1035 GPa using QMD and present quantum Monte Carlo
(QMC) calculations on liquid krypton. Finally, we present data
from shock compression experiments on Sandia’s Z machine.
Following the Introduction is a section on employing DFT
for simulations under high energy-density (HED) conditions
with emphasis on construction of high-quality PAW potentials
and using QMC calculations to compare functionals, a section
describing the design, diagnostics, and analysis of shock
experiments on Z, and finally a section devoted to results and
discussions.

II. FIRST-PRINCIPLES SIMULATIONS: DFT AND QMC

DFT [1] is a formally exact reformulation of the quantum
mechanical many-body problem that results in a significant
reduction in computational complexity compared to methods
that rely on direct solutions of the Schrödinger equation [1].
In translating this fundamental theory into an algorithm for
performing computations, approximations must be made. The
approximations necessary to perform simulations of hundreds
of atoms and how to systematically converge the calculations
are discussed in detail in Ref. [14]. In this paper, we will
discuss two aspects: the choice of exchange-correlation (XC)
functional and the construction of PAW core potentials with
high fidelity for use at high temperature.
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A. Selecting an exchange-correlation functional

The most important fundamental approximation in any DFT
calculation is the choice of an approximate XC functional. The
XC functional incorporates all many-body quantum physics
effects and via its functional derivative with respect to density,
in turn, incorporates these into an effective potential for
independent particles. We look to choose between two comple-
mentary functionals: LDA [15] and AM05 [16]. Local density
approximation (LDA) is expected to perform accurately in the
high-density limit where the electron distribution is close to
uniform while the AM05 functional includes a dependence on
the dimensionless gradient in addition to the density and is
designed to capture the effects of surfaces by matching results
for a surface system, the Airy gas [17]. In the high-density
limit, the functional approaches LDA. AM05 has a high fidelity
for several classes of solids [18,19] under normal conditions
and its performance under shock compression is also excellent.
For example, AM05 has been validated for shock compression
of compressed SiO2 to 1700 GPa [4]. AM05 shows a complete
absence of van der Waals (vdW) attraction [19]. The result
is monotonic predictable behavior for low density allowing
for more straightforward inclusion of vdW, if necessary, in
contrast with functionals for which a spurious interaction has
to be compensated.

No a priori way exists for choosing which density func-
tional will most accurately reproduce the many-body physics
of a given system, be it of atomic, molecular, or condensed
matter character. In the case of krypton, strong a posteriori
clues due to prior work on the xenon Hugoniot [20] suggest
that the AM05 functional [16] will perform well. However, the
handling of the initial (relatively low pressure and cryogenic)
state of these calculations causes some concern given that
AM05 by design will not bind solid noble gases. Ideally,
as we are after thermodynamic properties, we would like to
choose a functional that can at least reproduce the proper
dynamics of the ions under all temperatures and pressures
we consider. In a canonical ensemble where the particle
number, density, and temperature are held fixed (NVT), the
ionic configurations should be sampled from a Boltzmann
distribution. The probability of sampling any state of the
system is then dependent only on the relative energies of those
states. So if the functional can reproduce the relative energy
ordering of different ionic configurations, this will increase
confidence that the dynamics is accurate.

To test the accuracy of two density functionals for the
cryogenic unshocked state of liquid krypton, we apply the
explicitly many-body diffusion quantum Monte Carlo method
(DMC) which is a method for solving the Schrödinger equation
directly. In this computational technique, there is no effective
Hamiltonian and long-range interactions are evaluated exactly,
rendering it an excellent choice for the study of materials
where van der Waals interactions are important [21]. In
performing DMC calculations of krypton, we use the same
pseudopotentials and other methodology as was recently
reported in Ref. [22], which found excellent agreement with
hydrostatic pressure experiments for the bulk modulus and x-
ray diffraction experiments for the equilibrium lattice constant
once zero point motion is considered [23,24].

To compare LDA and AM05 for liquid krypton, we
extracted snapshots of the atomic positions from 32-atom

FIG. 1. (Color online) Relative energies of snapshots of 32-atom
cells of Kr at 118 K and 2.43 g/cc. The top panel compares DMC
energies of snapshots extracted from AM05 calculations to the AM05
energetics. The bottom panel shows the same for snapshots extracted
from LDA based QMD simulations. The poor agreement is due to
clumping of the liquid from negative pressure.

QMD simulations at the density (2.43 g/cc) and temperature
(118 K) corresponding to the initial state of the krypton fluid
used in the shock compression experiments. In each case, we
compare the energies obtained using DMC as performed by
the QMCPACK code [25] to those from the DFT calculations.
The two functionals show a marked difference (Fig. 1), with
the energies from AM05 tracking those calculated with DMC
and the LDA results having an altogether different behavior.
Additionally, the spread of the energies in the case of the
LDA indicates that even if the ionic configurations were
representative of the proper fluid, the energetics correspond
to a system at a higher temperature than the 118 K desired.
The reason for this behavior is that the condition of these
simulations corresponds to a negative pressure state in LDA
and, as a result, the atoms form clumps rather than exhibiting
liquidlike behavior. These results, coupled with the results
for xenon under shock compression [20], provide convincing
validation for the applicability of AM05 to the krypton
Hugoniot. The combination of DFT and QMC offers a general
approach for improving the predictive capability of DFT
simulations; a particularly important aspect for modeling
materials where properties are unknown and experiments are
difficult, expensive, or perhaps even impossible to perform.
A similar methodology has also been used recently to assess
functionals for use with dense hydrogen and water [26,27].

B. Construction and validation of PAW potentials

The second necessary approximation for performing large-
scale molecular dynamics simulations that determines forces
and energies from DFT calculations is the use of core potentials
to remove the need to include large numbers of electrons in
the calculations and to reduce the size of the plane-wave basis
necessary to describe the valence. In practice, chemically inert
core electrons are replaced by a pseudopotential (PP) and only
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the valence electrons are treated explicitly. High-quality PPs
are available for VASP [28] and other codes. It is important to
distinguish the role of these potentials in an ab initio setting
as compared to the construction of classical potentials. For
ab initio work, the role of the pseudopotential is to integrate
over irrelevant degrees of freedom (such as tightly bound core
electronic states) while still reproducing the same problem
for the remaining degrees of freedom. The development of
PAWs for density-functional theory was an important step in
this direction given that this construction provides a direct
analytic mapping between the pseudized problem and the bare
all-electron problem that would in principle be solved given
infinite computational resources. This philosophy is in contrast
to classical simulations where the role of the potential is to
reproduce the physical characteristics of the system. In DFT,
for instance, this is exclusively the province of the exchange-
correlation functional and attempts to change the physics via
the PP should be viewed with extreme caution.

With this in mind, we have very carefully worked to
analyze the PAWs used for two reasons. First is that the
extreme pressures and temperatures accessed on the Hugoniot
of krypton are far from the conditions where pseudopotentials
are normally tested. It is important to verify the accuracy of
the mapping from the pseudoproblem to the all-electron one
in these conditions. Second, at these extreme states, entirely
different degrees of freedom may be accessed (for instance,
excitations of the normally inert 3d electrons) and the PAWs
used should allow for this flexibility in regions of phase
space where this is necessary. Details of this investigation
are presented in the Appendix.

C. Quantum molecular dynamics

The DFT-MD simulations were performed with VASP

5.3.3 [29] using stringent convergence settings [14,30]. Elec-
tronic states were occupied according to Mermin’s finite-
temperature formulation of DFT [7], which is essential for
performing QMD simulations with high fidelity in the warm
dense matter regime [2,14]. The simulations are performed
within the NVT ensemble with velocity scaling used to enforce
the ionic temperature. The shock experiments generate a
Hugoniot curve, the loci of end states reached in a single
shock, defined with respect to a given reference state.

The reference state for the calculations is the experimental
initial conditions of liquid krypton at a density of 2.43 g/cm3 at
T = 118 K. The hydrostatic Hugoniot condition is expressed
as 2(E − Eref) = (P + Pref)(vref − v) with E the internal
energy per atom, P the system pressure, and v the volume per
atom. Eref and Pref are the energy and pressure in the initial
state. The Hugoniot points were calculated by performing sim-
ulations at several temperatures for each density of interest for
low and medium compression, while keeping the temperature
fixed and changing the density in small increments, for the
steep section of the Hugoniot where the shock pressure is not
as sensitive to the temperature as it is to the density. A change
from temperature to density increments significantly improves
numerical convergence in the high-temperature regime. A
typical fully thermalized simulation requires of the order
4000 to 8000 time steps. The velocity Verlet algorithm was
used with a time step ranging from 0.5 to 4 fs depending

FIG. 2. (Color online) Shock Hugoniot of liquid krypton calcu-
lated with different PAW potentials using the AM05 XC functional
together with tabular equation of state models.

on temperature, maintaining stable ionic trajectories requiring
on the order of 3 to 10 electronic iterations per ionic step.
The results from QMD simulations are shown in the Fig. 2
and Sec. IV A.

As predicted in the Appendix, initial DFT Hugoniot
calculations on krypton indicated that the standard PAW po-
tential distributed with VASP was inadequate at high pressures
and high temperatures occurring under shock compression.
Figure 2 shows the standard PAW gives a significant steepening
of the Hugoniot at high compression, very similar to the
behavior seen for the standard xenon potential [30]. Two new
krypton PAW potentials were therefore constructed, both with
improved scattering properties for the atom at high energies
(see Fig. 10), and a behavior in pressure that agrees with
experimental data. Details of the PAW construction are found
in the Appendix. Briefly, one of the new PAWs has eight
electrons in the valence and is valid at a far wider range of
energies than the standard PAW. The other potential has 18
electrons in the valence and is thus more suitable for the highest
temperatures and pressures considered as core excitations are
likely to be important in that regime. The simulation results
for the principal Hugoniot are listed in Table I.

III. SHOCK EXPERIMENTS ON SANDIA’S Z MACHINE

To validate the high P-T response of liquid Kr and
validate the DFT simulations, a series of shock compression
experiments were performed on the Sandia Z accelerator [31].
Z is a pulsed power accelerator capable of producing currents
and magnetic fields greater than 20 MA and 10 MG, respec-
tively. The large current and field densities generate magnetic
pressures up to ∼650 GPa that can accelerate flyer plates up to
40 km/s [32]. The use of Z for performing shock experiments
has been demonstrated for a wide range of materials and
validated against traditional plate impact methods [33,34].
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TABLE I. QMD calculations of the principal Hugoniot for shock
compressed liquid krypton with an initial density of 2.43 g/cm3.
The points in the table are the calculated thermodynamic state of
the krypton in the post shock state. The AM05 XC functional was
used in all calculations. At lower pressures the improved PAW with
8 electrons in the valence was used. At higher pressures, the PAW
with 18 electrons in the valence was used. The asterisk indicates
calculations performed using the 18-electron PAW described in the
Appendix.

Density (g/cc) Pressure (GPa) Temperature (K)

3.615 4.0 700
4.82 24.3 8000
5.42 39.9 13 000
6.025 57.6 17 500
7.23 108 28 600
8.917 282 48 750
9.399 384 80 000
9.64 474 94 000
9.8* 540 104 000
10.2* 752 134 000
10.35* 854 146 000
10.50* 940 157 000
10.61* 1035 170 000

A. Target design

Figure 3 shows a schematic view of the shock experiment.
Targets consisted of a copper cell with a 6061-T6 aluminum
buffer plate (≈250 μm) and a rear Z-cut, α-quartz top-hat
1.5-mm window (single crystals, Argus International). A
copper spacer ring was placed between the rear top hat and
the front buffer plate. The spacer ring and top hat set the
sample thickness, which was approximately 300 μm. For one
experiment, the aluminum front plate was replaced with a
Z-cut, α-quartz buffer. The sample space was filled with high-
purity (>99.999%) krypton gas (Matheson Tri-Gas) to 16.8 psi
and cooled to 118 K using a liquid nitrogen cryosystem [35].
Mass spectroscopy of the krypton gas verified the purity and

FIG. 3. (Color online) Schematic of the cryogenic call used in
the Z shock compression experiments; the cell allows for long (15 ns)
steady shocks (see Fig. 4).

FIG. 4. Representative VISAR data. The shock transit from the
aluminum drive plate into the krypton and the shock transit from
the krypton to the rear quartz are indicated by sharp changes in the
VISAR trace.

that the krypton was of natural isotope composition. The initial
liquid krypton density was calculated from a linear fit of
density-temperature data [36–39] and was 2.43 g/cc with an
uncertainty of 0.5%. The refractive index of liquid krypton
at 118 K was (n = 1.30) determined from the experimental
data of Sinnock and Smith [40]. The initial density of the
aluminum drive plate at 118 K was calculated using a
SESAME 3700 isobar. The flyers were aluminum 6061-T6
with initial thicknesses of 1000 μm.

B. Diagnostics and analysis

A velocity interferometer system for any reflector
(VISAR) [41] was used to measure flyer (VF ) and shock
(US) velocities with an uncertainty of 0.2% to 0.5%. Multiple
VISAR signals were recorded, each using different velocity per
fringe settings, which eliminated 2π phase shift ambiguities
upon shocks and further reduced velocity uncertainties [42].
Figure 4 shows the VISAR velocity profile from one exper-
iment. The shock front in the krypton was reflective, so as
the shock transited from the aluminum buffer plate into the
krypton, the shock velocity of the krypton UKr

S was measured
directly. As an independent check on the measured shock
velocity, the velocity profiles were integrated to verify that
the distance traveled matched the sample thickness. Directly
below the krypton target was a quartz window where the
aluminum flyer velocity was measured. Some tilt can exist
in the target that causes the measured flyer velocity at the
quartz window and at the krypton target to differ causing
scatter in the experimental data. For the experiment using
the quartz buffer plate, the VF and U

quartz
S were measured

directly.
The particle velocity, pressure, and density (UP , P , and

ρ) of the shock compressed krypton were calculated using
a Monte Carlo impedance matching method (MCIM) [6,20]
to solve the Rankine-Hugoniot equations [43]. A weighted
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TABLE II. Experimental data for the principal Hugoniot for shock compressed liquid krypton with an initial density of 2.43 g/cm3. The
measured experimental quantities are the flyer velocity and the Kr shock velocity. For Z2294 the experimentally measured quantity is the shock
velocity in the quartz buffer plate and Kr shock velocity. The asterisk indicates experiments that used a quartz drive plate. The listed velocity
is the shock velocity in the quartz.

Shot Flyer velocity (km/s) UP (km/s) US (km/s) ρ (g/cm3) Pressure (GPa)

Z2114 18.32 ± 0.06 10.21 ± 0.05 13.89 ± 0.05 9.172 ± 0.157 344.6 ± 2.1
Z2294-N* 21.05 ± 0.04* 11.51 ± 0.04 15.47 ± 0.03 9.494 ± 0.103 432.7 ± 2.0
Z2294-S* 22.96 ± 0.04* 12.50 ± 0.04 16.64 ± 0.05 9.770 ± 0.138 505.5 ± 2.4
Z2148 24.58 ± 0.06 13.43 ± 0.05 17.83 ± 0.07 9.847 ± 0.244 581.9 ± 3.1
Z2165 27.93 ± 0.07 15.11 ± 0.06 20.04 ± 0.04 9.878 ± 0.132 735.8 ± 3.6
Z2196 29.22 ± 0.09 15.78 ± 0.07 20.78 ± 0.04 10.099 ± 0.169 796.8 ± 4.3
Z2166 30.47 ± 0.09 16.46 ± 0.07 21.43 ± 0.09 10.478 ± 0.189 857.1 ± 5.0

linear fit and parameter correlation matrix for aluminum were
calculated from data in Ref. [44]. The aluminum Hugoniot
state prior to the shock transiting into the liquid krypton was
determined using the flyer velocity measured below the target
on the quartz window. In each impedance match calculation,
the measured shock velocities and the initial krypton density
were varied about their mean using a random number with
standard deviation equal to the measurement uncertainty.
Uncertainty in the aluminum Hugoniot was accounted for by
varying the fit parameters about their mean using correlated
random numbers. The Hugoniot state was calculated using
the reflected Hugoniot of aluminum and defined as the
mean of the MCIM calculation with uncertainty equal to
one standard deviation. The MCIM results are corrected for
the aluminum release using a release isentrope calculated
from SESAME 3700. The SESAME 3700 table release was
shown to have good agreement with experimentally measured
deep release states for aluminum [33]. The results for the
principal Hugoniot are listed in Table II. For the experiment
that used α-quartz as the buffer plate, a recently developed
quartz release model [45] was used in the impedance matching
calculation.

The target cell geometry (Fig. 3) allowed for measurement
of the reshock state in Kr. As the shock in the Kr transited
into the rear quartz top hat, the shock in the quartz becomes
reflective and the quartz shock velocity was measured directly.
The behavior of quartz under shock compression is well
characterized [4,45], which determined UP and P states in
the quartz and thus Kr accurately since UP and P are equal
at the boundary. The reshock state was calculated using the
method described in Ref. [6] and the linear fit in Eq. (1).
Reshock results are listed in Table III.

IV. RESULTS AND DISCUSSION

Like other low-impedance materials, the Kr Hugoniot data
have been limited to pressures obtainable using gas guns
or high-explosive drivers. In Fig. 5, we show the state of
knowledge before this work: experimental data were available
to 90 GPa [46] and existing equation of state (EOS) models
(SESAME 5181 and LEOS 360) exhibited markedly different
behavior over this narrow range of compression. In this section,
we compare the new experimental data and results from
DFT/QMD simulation. The previous and newly developed
tabular EOS models are compared to both sets of results over
the entire pressure range along the Hugoniot.

A. Shock Hugoniot of liquid krypton

Figures 6 and 7 compare the Z experimental data, the tabular
EOS models, and the DFT results using the improved PAW
and 18-electron PAW described earlier. In the US-UP plane,
the DFT and experimental data are in good agreement. The
LEOS Y360 table reproduces both data sets up through the
highest 18-electron PAW DFT data point. The weighted linear
fit to the experimental data is

US = (1.313 ± 0.225) + (1.231 ± 0.017)UP (1)

and is valid for UP > 9 km/s. The off-diagonal covariance
term for the fit is σC0σS1 = −3.834 × 10−3.

The differences between the experimental, DFT, and tabular
EOS models are more pronounced in the ρ-P plane, plotted
in Fig. 7. At higher pressures, the experimental data show
scatter that is likely caused by not directly measuring the flyer
plate velocity. However, the experimental and DFT results
show that previous EOS models (SESAME 5181 and LEOS

TABLE III. Experimental data for the reshock state in liquid krypton with an initial density of 2.43 g/cm3.

Shot Kr US (km/s) Quartz US (km/s) Kr ρ (g/cm3) Kr pressure (GPa)

Z2114 13.96 ± 0.04 16.86 ± 0.03 9.996 ± 0.261 423.4 ± 1.8
Z2294-N 15.01 ± 0.03 17.94 ± 0.04 10.270 ± 0.264 488.2 ± 2.5
Z2294-S 15.95 ± 0.05 18.93 ± 0.05 10.406 ± 0.284 552.2 ± 3.4
Z2148 17.82 ± 0.05 20.92 ± 0.04 10.530 ± 0.231 694.7 ± 3.1
Z2165 19.98 ± 0.04 23.14 ± 0.05 10.692 ± 0.201 876.0 ± 4.4
Z2196 20.68 ± 0.05 23.68 ± 0.05 11.039 ± 0.256 923.7 ± 4.5
Z2166 21.41 ± 0.09 24.16 ± 0.07 11.756 ± 0.549 967.2 ± 6.5
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FIG. 5. (Color online) Shock Hugoniot of liquid krypton below
150 GPa. Both the standard and improved PAWs show good
agreement with the experimental data from Ref. [46]. Th EOS tables
are plotted for comparison.

360) do not describe the krypton Hugoniot at high pressures.
Similarly to the liquid xenon Hugoniot [20], the previous EOS
models bracket the true Hugoniot behavior likely because
of their different treatments of the electronic component to
the Helmholtz free energy. The LEOS Y360 table developed
by Sterne [47] utilized the DFT and experimental principal
Hugoniot results in its construction, thus reproducing the data.

B. Reshock state in krypton

In the experiment, the Kr shock velocity (US) is continu-
ously measured as the shock transits the Kr sample. At higher

FIG. 6. (Color online) Shock Hugoniot of liquid Kr in the US-UP

plane. The behavior is linear and the DFT calculations show good
agreement with the experimental data. The Y360 EOS reproduces
the data.

FIG. 7. (Color online) Shock Hugoniot of liquid krypton in the
ρ-P plane showing good agreement between the DFT calculations
and experimental data while highlighting differences with existing
models.

flyer velocities, some attenuation of the shock velocity in
the Kr can occur because of release waves produced from
the melted portion of the flyer. Using the linear fit to the Z
experimental data [Eq. (1)] and the measured US , we determine
the Kr pressure, density, and particle velocity prior to the
shock reflecting from the Kr/quartz interface. The particle
velocity and pressure in the reshock state are accurately known
because they are determined from the quartz standard [45].
The Rankine-Hugoniot equations are solved to determine
the Kr density in the second shock state. Table III lists the
experimental observables (Kr US and quartz US) and the
calculated final density and pressure state in the Kr. Figure 8
shows the Kr reshock data compared to the reshock states
determined using the LEOS Y360 table. Reshock paths are
calculated using the Y360 table and impedance matching to the
quartz Hugoniot to determine the reshock envelope of states.
The Y360 EOS shows good agreement over the examined
pressure range, a sign that the EOS table is valid along the
principal Hugoniot and also for off Hugoniot states reached
via repeated shocks.

C. Shock temperature of liquid krypton

The temperature of shocked material is of great importance,
but subject to significant uncertainties due to lack of experi-
mental data. Results from QMD simulations are often the only
temperature information available. It is therefore of importance
to compare QMD based estimations of temperature of shock
states with EOS tables/models. Figure 9 plots the Hugoniot
temperature calculated using the Y360 EOS table and the DFT
temperatures. The EOS model and DFT temperatures show
good agreement over the examined pressure range better than
5% for pressures below 1000 GPa. The agreement suggests that
the thermal models used in design of Y360 are appropriate for
this pressure range.
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FIG. 8. (Color online) The experimental reshock data and cal-
culated reshock envelope using the LEOS Y360 EOS table and
quartz Hugoniot [45]. The different symbols connect measurements
from the same experiment, for instance, the shock state marked by
the square at ≈345 GPa and 9.2 g/cc was the intial state for the
reshock measurement also marked by a square at ≈423 GPa and
10.0 g/cc. The reshock state probes compression at higher density
(lower temperature) than the corresponding first shock state. Again,
the LEOS Y360 table performs well, capturing the reshock states.

D. Equation of state models

The difficulty in describing high energy-density materials
at several Mbar without the use of first-principles simulations
like QMD is evident from the behavior of the different
models shown in Figs. 5 and 7. Traditionally, EOS models
are calibrated Hugoniot data from plate impact experiments
and isothermal data from diamond anvil cells (DAC). Ex-

FIG. 9. (Color online) Temperature along the Hugoniot for liquid
krypton: experimental data [46], DFT/QMD results, and calculated
from the Y360 tabular EOS. The difference between DFT/QMD and
Y360 increases with pressure although it remains smaller than 5%
also at 1000 GPa/160 kK.

trapolation beyond the range of experiments is challenging.
Most expressions for the free energy of a material utilize a
separation between contributions from cold compression (the
cold curve), thermal excitations of ions (ionic thermal model),
and finally the contribution of thermal excitations of electrons
(electronic thermal model). The problem is underconstrained
in terms of experimental data, especially the thermal terms
due to the lack of high-precision temperature measurements
at high-pressure conditions. The resulting EOS is based on
a separation of terms in the free energy that is not unique.
While the combined behavior in pressure and energy leading
to the Hugoniot condition is constrained by experiments, the
behavior of different terms with pressure and temperature
is not, often resulting in strong deviations between different
EOS models as they are extrapolated to pressures of hundreds
of GPa.

In the case of Kr, we find that the Y360 table reproduces
the principal Hugoniot data over a wide range and also
captures off-Hugoniot data as shown in Fig. 8. The Y360 table
temperatures are also consistent with the QMD results over a
wide range and thus we find that Y360 should be the preferred
equation of state for Kr under high energy-density conditions.

V. SUMMARY

We have performed an extensive study of shock com-
pressed liquid krypton up to 850 GPa on first shock and
950 GPa on reshock. Integration of DFT calculations and
shock experiments provides a solid basis for understanding
the behavior of krypton at extreme conditions. We demonstrate
that QMD simulations can be performed with high precision
also at temperatures above 10 eV (110 kK) provided that the
high-energy scattering properties of the pseudopotentials/core
potentials are verified. Furthermore, we find that the exchange-
correlation functional AM05 captures the energetic variations
in a cryogenic krypton liquid as calculated with quantum
Monte Carlo, making it a good choice for krypton. The
use of high-fidelity first-principles simulations allows for
a significantly more detailed understanding of the different
components of the free energy. QMD straightforwardly yields
internal energy, pressure, structure, diffusion, and the entropy
for solids. Recently, a method was developed that yields
entropy [48] with very high precision, making QMD a com-
plete method for first-principles thermodynamics. Successful
application of QMD to thermodynamics, however, relies on
performing converged simulations, using core potentials of
high fidelity for high-temperature applications, and informed
choices of exchange-correlation functionals.
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APPENDIX: PAW CONSTRUCTION AND VALIDATION

In practice, when performing DFT calculations of warm
dense matter, chemically inert core electrons are replaced by a
pseudopotential (PP) and only the valence electrons are treated
explicitly. High-quality PPs are available for VASP [28] and
other codes. The quality is usually determined by comparing
zero-temperature lattice constants and bulk moduli with results
from equivalent calculations with an all-electron code. It
is important to note that the quality of a PP can only be
determined by comparison to all-electron calculations and
never by comparison to experiment. The key issue is ensuring
their transferability. A PP is usually constructed from the
all-electron results of a single, free, spherically symmetric
atom. For this atom, the PP generally produces the same
results as an all-electron calculation. However, the success
of transferring a PP to a different environment, such as to
an atom in a bulk lattice, is dependent on a number of
factors. Until recently, most PPs have been constructed for
bulk matter at equilibrium and at fairly low temperatures. We
use the projector augmented wave (PAW) PPs distributed with
VASP. We note that while this investigation was made in the
context of the PAWs used in VASP, the concepts are general
to any DFT code that uses pseudopotentials. While these
PPs usually produce very good zero-temperature equilibrium
lattice constants and bulk moduli, the accuracy may not hold
for high energy-density applications. The use of these PAWs
constructed for low temperatures in extreme environments can
produce less reliable results, as evident both in this work and
in previous work on xenon [30].

Additional considerations needed for using PPs at high
temperature and pressure are illustrated in Fig. 10. In Fig. 10,
we plot the arc tangent of the logarithmic derivative at R,

d ln φ(r)

dr

∣∣∣∣
r=R

= dφ(r)

dr

/
φ(r)

∣∣∣∣
r=R

, (A1)

of radial wave functions of different angular momentum versus
the energy of the wave function, calculated in the krypton
atom with the PAW potential (colored dotted lines) compared
to the all-electron results (black/gray dotted lines). Fermions
(electrons) occupy states around the Fermi energy according to
the temperature-dependent Fermi-Dirac distribution. As seen
in Fig. 10, the distribution at high temperature (black full line,
180 000 K) is considerably wider than at room temperature
(gray dashed line). The quality of the wave functions above
the Fermi energy thus needs to be much higher at larger
temperatures. It is clear that the standard PAW potential in
Fig. 10(a) is not suitable for larger temperatures while being
adequate for low temperatures.

We constructed [49] a new PAW potential for krypton
from the same 8 valence electron atomic configuration as
the standard potential, using the f atomic orbital for the

R 2.50a0

5 5
E Ry

3π
2

π
2

π
2

arctan logarithmic derivative

(a) Standard (8 electron) Kr PAW (PAW Kr 07Sep2000)

R 2.50a0

5 5
E Ry

3π
2

Π
2

π
2

arctan logarithmic derivative

(b) New 8 electron Kr PAW

R 2.00a0

5 5
E Ry

3π
2

π
2

π
2

π

arctan logarithmic derivative

(c) New 18 electron Kr PAW

FIG. 10. (Color online) Logarithmic derivatives of atomic radial
wave functions at distance R from the nucleus as a function of
energy. Colored lines are s (red), p (blue), d (green), f (orange),
and g (pink) angular momentum solutions from a pseudopotential
calculation. They are compared to the corresponding black/gray
all-electron solutions. The black full (gray dashed) line shows the
Fermi-Dirac distribution at 180 000 K (300 K) with the Fermi energy
that of an isolated atom.

local potential instead of the d, decreasing the partial core
radius from 2.00 to 1.80 bohrs, and adding projectors to
both the p and d channels. The pertinent information for
the projectors is summarized by a giving the energy and the
cutoff radius from the description field in the VASP POTCAR
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file:

Description
l E RCUT
0 −23.1713547 1.800
0 −16.3269912 1.800
1 −9.3927349 2.000
1 1.3605826 2.000
2 −1.3605826 2.300
2 27.2116520 2.300
3 −1.3605826 2.300,

where l is the angular momentum of the given projector,
cutoff distances (RCUT) are in bohrs, and projector energies
(E) in eV. This results in the PAW potential with the same
outmost cutoff radius of 2.30 bohrs and a slightly larger
recommended kinetic energy cutoff (ENMAX 239.322 versus
185.392 eV), used in Fig. 10(b). Comparing Figs. 10(a)
and 10(b), an improvement is evident, particularly in the p and
f channels. This PAW potential is adequate for considerably
higher temperatures compared to the standard PAW potential
used in Fig. 10(a).

While the new Kr PAW potential might be adequate for
the temperatures reached in our calculations, the very high-
pressure conditions need to be taken into account as well.
It is important to consider if the inert core approximation is
valid at these higher temperatures and pressures. A concern
was that the lowest valence electron energy levels in the
calculations were not fully occupied in our calculations. That
is, the Fermi-Dirac distribution at these high temperatures also
affected the lowest-energy electrons explicitly included in the
calculations. Depending on the electronic structure, this may
be a sign of including too few valence electrons. In addition,
when investigating the average particle distance, we found
that a substantial fraction of the electrons were closer than
two times the outmost core radius of the potential [49]. Again,
overlap does not automatically disqualify a potential, but these
two occurrences suggest that the electrons in the highest-lying
core levels are not inert and we need to add them to the
valence in order to treat them explicitly and reduce the core
radii.

In Fig. 10(c) we show the results at the smaller R of 2.0
bohrs, from the new PAW potential where the 10 d electrons
are added to the valence. The partial-core radius is decreased
further to 1.40 bohrs, and all cutoff radii are reduced and
projectors added:

Description
l E RCUT
0 − 23.1713547 1.500
0 − 9.5240782 1.500
0 129.2553470 1.600
1 − 9.3927349 1.700
1 − 4.0817478 1.700
1 102.0436950 1.900
2 − 81.7651686 1.500
2 − 1.3605826 1.500
2 27.2116520 1.600
3 − 1.3605826 1.600.

The resulting plane-wave cutoff energy ENMAX is almost
tripled; 680.776 eV, and the outmost core radius reduced to
1.90 bohrs, a value more commensurate with the high densities
in our calculations. As seen in Fig. 10(c), the logarithmic
derivatives are improved considerably even at this smaller
distance from the nucleus, and this PAW potential should be ad-
equate for all calculations presented here. Note that the Fermi-
Dirac distribution for very large temperatures, in fact, reaches
down to the distinct step feature at ∼ − 6 Ry (−81.76 eV)
marking the very narrow band of 3d (core) levels. However,
with this potential, more of the electrons need to be explicitly
treated in the calculations and it also requires a higher kinetic
energy cutoff, making it more computationally expensive.

Good agreement between the logarithmic derivatives of the
wave functions in PP and all-electron calculations on an atom
is a necessary but not sufficient condition of appropriateness.
Further testing should be considered, such as the usual
calculations of equilibrium properties of a solid. For our
applications, it is also valuable to compare density of states
for some relevant atomic configurations calculated with the PP
and compared to an all-electron calculation [49], in particular
to identify ghost states at high energies.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
W. Kohn and L. J. Sham, ibid. 140, A1133 (1965).

[2] M. P. Desjarlais, Phys. Rev. B 68, 064204 (2003).
[3] M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, Science 322,

1822 (2008).
[4] M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett. 103,

225501 (2009).
[5] M. D. Knudson, M. P. Desjarlais, R. W. Lemke, T. R. Mattsson,

M. French, N. Nettelmann, and R. Redmer, Phys. Rev. Lett. 108,
091102 (2012).

[6] S. Root, K. R. Cochrane, J. H. Carpenter, and T. R. Mattsson,
Phys. Rev. B 87, 224102 (2013).

[7] N. Mermin, Phys. Rev. 137, A1441 (1965).
[8] T. R. Mattsson, J. M. D. Lane, K. R. Cochrane, M. P. Desjarlais,

A. P. Thompson, F. Pierce, and G. S. Grest, Phys. Rev. B 81,
054103 (2010).
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